Semantic Constraint Based Unsupervised Domain Adaptation for Cardiac Segmentation
نویسندگان
چکیده
The segmentation of unlabeled medical images is troublesome due to the high cost annotation, and unsupervised domain adaptation one solution this. In this paper, an improved method was proposed. proposed considered both global alignment category-wise alignment. First, we aligned appearance two domains by image transformation. Second, output maps in a way. Then, decomposed semantic prediction map category, aligning manner. Finally, evaluated on 2017 Multi-Modality Whole Heart Segmentation Challenge dataset, obtained 82.1 dice similarity coefficient 4.6 average symmetric surface distance, demonstrating effectiveness combination
منابع مشابه
Unsupervised Domain Adaptation for Semantic Segmentation with GANs
Visual Domain Adaptation is a problem of immense importance in computer vision. Previous approaches showcase the inability of even deep neural networks to learn informative representations across domain shift. This problem is more severe for tasks where acquiring hand labeled data is extremely hard and tedious. In this work, we focus on adapting the representations learned by segmentation netwo...
متن کاملDomain-Constraint Transfer Coding for Imbalanced Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) deals with the task that labeled training and unlabeled test data collected from source and target domains, respectively. In this paper, we particularly address the practical and challenging scenario of imbalanced cross-domain data. That is, we do not assume the label numbers across domains to be the same, and we also allow the data in each domain to be coll...
متن کاملUnsupervised Domain Adaptation for Joint Segmentation and POS-Tagging
Sophisticated models have been developed for joint word segmentation and part-of-speech tagging, with increasing accuracies reported on the Chinese Treebank data. These systems, which rely on supervised learning, typically perform worse on texts from a different domain, for which little annotation is available. We consider self-training and character clustering for domain adaptation. Both metho...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملBoosting for Unsupervised Domain Adaptation
To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2021
ISSN: ['2160-0368', '2160-0384']
DOI: https://doi.org/10.4236/apm.2021.116041